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LElTER TO THE EDITOR 

Correlation length in Ising strips with free and fixed boundary 
conditions 

Theodore W Burkhardtt and Ihnsouk GuimS 
Institut Laue-Langevin, 156X, F-38042 Grenoble CCdex, France 

Received 20 August 1984 

Abstract. The correlation length of boundary spins in the king model, defined on strips 
of triangular lattice with free boundary conditions, is determined with an efficient numerical 
procedure based on the star-triangle transformation. In the case of isotropic critical 
interactions, the extrapolated amplitude of the correlation length is in excellent agreement 
with the value 2 / ( n ~ 7 ~ ~ )  predicted by conformal invariance. An analytical formula for the 
amplitude in strips with anisotropic interactions is proposed. Fixing the spins on one edge 
reduces the amplitude of the correlation length on the other edge by a factor 1. The 
convergence of phenomenological renormalisation with free boundary conditions is studied. 

According to the theory of finite-size scaling (Barber 1983), the longitudinal spin-spin 
correlation length (( T, L )  in a spin system, defined on a two-dimensional strip of finite 
width L and infinite length, varies as 

at criticality, where the amplitude A is a constant. In a recent letter Cardy (1984) 
showed that conformal invariance of the correlations in systems with isotropic interac- 
tions implies the universal values 

A=(?T7) - ' ,  periodic boundary conditions, (2a)  

= 2 ( q - ' ,  free boundary conditions, (2b) 

where 77 and T i l  are the standard bulk (Patashinskii and Pokrovskii 1979) and surface 
(Binder 1983) critical exponents. Exact calculations and numerical studies (Derrida 
and de Seze 1982, Nightingale and Blote 1983) have indicated that equation (2a)  is 
satisfied in a variety of models. In this letter we report results confirming (2b) in the 
Ising model. 

We have considered strips of Ising spins with finite width and infinite length. The 
strips have a triangular lattice structure and are made up of N + 1 columns of spins, 
as shown for N = 2 in figure 1 .  The width L in lattice constants is L = & N/2. The 
couplings in the three principal directions of triangular lattice are denoted by 
K , ,  KZ, K3, with the K, bonds oriented parallel to the edges of the strip, as in figure 1. 

With a numerical method based on the star-triangle transformation, we have 
calculated the correlation length tN of spins on the left edge, with free boundary 
conditions on the left edge and with either free or fixed boundary conditions on the 
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Figure 1. Strip with three layers ( N  = 2). The full lines indicate the original triangular 
lattice and the broken lines the intermediate hexagonal lattice. 

right edge. In the fixed-boundary calculations the spins on the right edge were 'frozen' 
by an infinite edge coupling. The amplitude A was determined by extrapolation from 
numerical results for values of N up to 100. With a finite field applied to the spins 
on the right edge, the extrapolation yields a result indistinguishable from the extrapo- 
lated result with 'frozen' couplings or an initially infinite field. 

On the basis of our numerical results (which are presented below), we propose the 
formulae 

lim -= ( 2 / ~ ) ( s i n h  2K2+sinh2K,)-', 

= ( l /T)(s inh2K2+sinh 2K3)-I, 

free boundary conditions 
on right edge 

fixed boundary conditions 

5 N  

(30) 

on right edge (3b) 

(4) 

We are unaware of a rigorous derivation of equations (3). The factors (sinh2K2+ 
sinh 2K3)-I follow from an intuitive argument (Barber et al 1984) in which the lattice 
is rescaled so that the bulk correlation length diverges isotropically. Equations (3) 
resemble the exact result 

( 5 )  lim -=-(sinh 2K2)-I, 
N-r" T 

of Nightingale and Blote (1983) for the square lattice with periodic boundary condi- 
tions. 

Since ~ ~ 1 =  1 for the two,dimensional Ising model (McCoy and Wu 19733: and since 
sinh 2K = l / h  and L =  J3 N / 2  for a triangular lattice with isotropic interactions, 
equation (3a)  is consistent with prediction (26). There is also complete consistency 
in the special cases K I  = 0, K2 = K,; K2 = 0, K I  = K , ;  K3 = 0, K I  = K2 in which a square 
lattice with isotropic interactions is obtained. (When the triangular lattice is distorted 

N+m N 

where the couplings satisfy the Houtappel ( 1950) criticality condition 

sinh 2KI sinh 2K,+sinh 2K2 sinh 2K3+sinh 2K3 sinh 2KI = 1. 

square lattice with periodic boundary conditions 6 N  
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so that the square lattice has equal and perpendicular bond lengths, L =  N / 2  in the 
first case and L = N in the second and third cases; in (3) and ( 5 )  the correlation length 
is specified in units of the lattice constant parallel to the edges.) 

We now briefly discuss the method used to calculate &. With modest computing 
times it yields results for strip widths far larger than the largest considered thus far 
with numerical transfer-matrix methods (Nightingale 1982, Barber 1983). The method 
utilises an exact mapping, based on the star-triangle transformation (Syozi 1972), that 
replaces a strip with couplings K , (  m -;, n), K2( m, n), K3( m, n)  by a similar strip with 
transformed couplings K , ( m  -f ,  n + l) ,  K2(m,  n + l ) ,  K,(m, n + 1). The index m = 
1,2, . . . labels the couplings in order of increasing distance from the left edge, there 
being N + 1 couplings K ,  and N couplings K2 and K,, as in figure 1. The mapping 
is carried out by replacing all right-pointing triangles of the strip by stars to obtain an 
intermediate hexagonal lattice (see figure I )  and then eliminating the left-pointing stars 
to obtain a strip of triangular lattice, with transformed couplings and with the same 
widtht as the original strip. This mapping has been used to study surface critical 
behaviour in the semi-infinite Ising model (Hilhorst and van Leeuwen 1981, Burkhardt 
and Guim 1984, Burkhardt et a1 1984), and we refer to these papers for details. 

The explicit form of the transformation from the nth to the n + 1 st coupling constants 
in the subspace K,( m, n) = K,( m, n) is given in Burkhardt et a1 ( 1984). The generalisa- 
tion to K z  f K 3  is straightforward, and a magnetic field applied to the spins on the 
edge may also be included. Some convenient variables that simplify the star-triangle 
transformation are discussed in Syozi (1972). 

The boundary magnetisation m,( n )  and pair correlation function gll( r, n) of boun- 
dary spins transform under the mapping according to 

m , ( n )  = (1 - exp[ -4~ , ( f ,  n + 1)]}’”mI(n+ 1)  (6a)  

+gIl(r-l, n+ l ) I ,  r z  1. (6b) 

gll(r, n) = ${ 1 - exp[-4K1(f, n + 1 )l)[g~~( r + 1, n + 1)  + 2g11(r, n + 1)  

The magnetisation and pair correlation function of the initial system are determined 
by the sequence of edge couplings K,(f ,  n) according to (Hilhorst and van Leeuwen 
1981, Burkhardt et a1 1984) 

mI(O) = *[f(03)l”2 (7a)  

When the mapping is iterated with homogeneous critical initial couplings (either 
isotropic or anisotropic) and with free boundary conditions on both edges, 
exp[-4K1(;, n)] varies as (2n)-’ for 1 << n << N 2  and approaches a constant value for 
n >> N2.  This behaviour can be understood from an analytic solution of the differential 

t With the star-triangle transformation, one can also map a triangular lattice in the form of a triangle onto 
a similar system with modified couplings and fewer spins. This type of transformation has been utilised in 
the exact differential renormalisation of the Ising model (Hilhorst er a /  1979) and in the computation of 
comer critical exponents (Barber et a /  1984). In the application to strips considered in this letter, there is 
no reduction in the number of spins. 
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flow equations (Burkhardt er a1 1984) in the strip geometry. It follows from equations 
(7) that ml(0) = 0, as expected, and that g , , ( r ,  0) decays exponentially with correlation 
length 

tN = illn{ 1 - exp[-4K,(i, a)]}l-”2 (8) 

With fixed boundary conditions on the right edge (an infinite edge coupling or a 
finite field), exp[-.IK,(t, n)] again varies as (2n)-’ for 1 << n << N 2 .  For n >> N 2 ,  K2(1. n )  
and K,( 1, n) approach a limiting value K2(  1, CD) = K,(  1, CO). (After N iterations 
K 2 ( m ,  n )  = K,(m, n )  for m = 1,2, .  . . , N.) From the transformation 

free boundary conditions on right edge. 

exp[-4Kl(;, n + l)]  = exp[-4KI(t, n)]/cosh2 2K2( 1, n )  (9) 

for the edge couplings (Burkhardt er a1 1984), one sees that exp[-4K,(i, n)]- 
[cosh 2K2( 1, for n >> N 2 .  From (7a) it follows that ml(0)  varies as N-1’2 for 
large N, a result in agreement with the scaling prediction m, - N-’I’” (Fisher and de 
Gennes 1978) and with previous exact work on the two-dimensional Ising model 
(Au-Yang and Fisher 1980). From equations (7b) and (7c), one derives 

tN =t{ln[cosh2 2K2(l,  C O ) ] } - ” ~  (10) 

for the correlation length. 
Our numerical procedure for determining tN was extremely simple. We iterated 

the mapping of the coupling constants until K , ( &  n )  or K2( 1, n )  remained constant to 
within 1 part in 10’ per iteration (about 3 N 2  iterations are required) and then calculated 
tN with equation (8) or ( lo),  respectively. Determining tN for a strip with N = 100 
on a DEC-10 computer required about three minutes of computer time. 

Figures 2 and 3 show tN/ N as a function of N-I at criticality for N = 6, 8, 12, 
16, 20, 28, 40, 56, 100 with free and fixed (or finite-field) boundary conditions on the 
right edge, respectively. Several different sets of critical couplings are considered. In 
every case the results extrapolate linearly to values indistinguishable from the encircled 
points, which give the predictions of equations (3a)  and (3b). The beautiful agreement 
leads us to believe that (3a)  and ( 3 b )  are exact. Note in figure 3 that the results for 
fixed-spin (infinite field) and finite-field boundary conditions on the right edge extrapo- 
late to the same point. (The finite field increases without bound on iteration of the 
mapping.) Some of the results shown in figure 2 are listed in table 1. 

The finite-size scaling method known as phenomenological renormalisation (Night- 
ingale 1982, Barber 1983) has proved to be an extremely reliable method for determining 
the bulk critical properties of low-dimensional systems. The convergence with increas- 
ing strip width of the estimates furnished by phenomenological renormalisation toward 
exact bulk results has been studied numerically (Nightingale 1976) and analytically 
(Derrida and de Seze 1982) in Ising strips with periodic boundary conditions. Equation 
(2b) provides a way of determining the surface critical exponent 7)11 using phenomeno- 
logical renormalisation with free boundary conditions. We now present numerical 
information we have obtained on the convergence of phenomenological renormalisation 
with free boundary conditions in Ising strips. 

Comparing strips of N and N - 1 layers and considering only the subspace K ,  = 
K 2  = K 3  = K of isotropic interactions, we write the fundamental equation of 
phenomenological renormalisation in the form 

fixed boundary conditions on right edge 

t N - I ( K ‘ )  =KN- l ) /NI tN(K) .  ( 1 1 )  

The fixed point K * (  N )  of equation ( 1  1 )  furnishes an estimate of the critical coupling. 
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Figure 2. Calculated values of tN/ N with free boun- 
dary conditions for N =6, 8, 12, 16, 20, 28, 40, 56 
and 100. The encircled points at N = CCI are predic- 
tions of equation (30). The numbers ( S : ,  S:, S: )  
specify the critical couplings, with S, = sinh 2K,. 
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Figure 3. Calculated values of .$&IN with fixed 
boundary conditions for N = 6, 8, 12, 20, 28, 40, 56 
and 100. The sequences of points marked 'fixed' and 
'field' were calculated with fixed (infinite-field) and 
finite-field (sinh2 h = 0. I )  boundary conditions on the 
right edge, respectively. The encircled points at N = 
CO arz predictions of equation (3b). The numbers 
(S: ,  S:, S: )  specify the critical couplings, with S, = 
sinh 2K,. 

Table 1. Values of tN /  N at criticality for free boundary conditions; S, = sinh 2K,. The 
entries for N = CO follow from equation (3a).  

s -1 S - 1  S - -L N S ,  = s, = s3 = 11 d5 1 - 2 7  2 -  7 3 - 3  

6 
8 

12 
16 
20 
28 
40 
56 

100 

0.6748 
0.6438 
0.61 28 
0.5974 
0.5882 
0.5776 
0.5697 
0.5645 
0.5587 

0.59 13 
0.5626 
0.5341 
0.5 198 
0.51 13 
0.5016 
0.4944 
0.4895 
0.4842 

CO 0.5513 0.4775 

An estimate y , ( N )  for the thermal scaling index (Patashinskii and Pokrovskii 1979) is 
given by (Nightingale 1982) 

where the primes denote differentiation with respect to the argument K. Finally we 



L30 Letter to the Editor 

obtain an estimate yh,( N) of the surface magnetic scaling index yh, = d - 1 - q / 2  
(Binder 1983) from 

yhi(N) = 1-(J1/2~)[N/5,(K*(N))I  (13) 

in accordance with equations (1 )  and (26). 
Our results for K * ( N ) ,  y , ( N ) ,  and yh,(N) in strips of triangular lattice with free 

boundary conditions are compared with Nightingale’s (1976) data for strips of square 
lattice with periodic boundary conditions in figures 4 and 5. As one might have 
expected, the convergence to the exact results is considerably faster in the case of 
periodic boundaries. According to the analytical results of Derrida and de Seze (1982), 
K * ( K J )  - K * ( N )  - N - 3  and y,(m) -yt( N)  - N T 2  for the square lattice with periodic 
boundary conditions in the large-N limit. Our numerical results for the triangular 
lattice with free boundaries are consistent with the asymptotic forms K*(m) - K * (  N )  - 
K2,  yt(cO) - y t (  N) - N-’, yhl(KJ) -yhl(N) - N-’ derived analytically (Burkhardt and 
Guim 1985) for the square lattice with free boundaries in the extreme anisotropic or 
quantum-Hamiltonian limit. 

Using the star-triangle method to calculate the correlation length tN for strip widths 
up to N = 100, we have confirmed prediction (26) in Ising strips with free boundaries, 
proposed a generalisation for anisotropic couplings, considered the effects of fixed 
boundary conditions, and studied the convergence of phenomenological renormalisa- 
tion with free boundaries. Unfortunately, the star-triangle method for calculating tN 
is only applicable to a few systems. The system must, of course, have a star-triangle 
transformation. In addition, thermal averages of the edge spins must transform as in 
(6a)  and (661, without generating more complicated correlation functions. 

105- 

1.03 

2 
i- 

Periodic 

I  i 1 
0005 0010 0015 

t 
N - 2  

Figure 4. Estimates K * (  N) of the bulk critical coup- 
ling K ,  obtained with phenomenological renormali- 
sation. ‘Free’ and ‘periodic’ label results for strips 
of triangular lattice with free boundary conditions 
and strips of square lattice with periodic boundary 
conditions, respectively. 

I , 1 I 
0.05 0.10 0.15 

N-‘  

Figure 5. Estimates y,( N) and Y h , (  N )  of the exact 
scaling indices y, = 1, yh, = obtained with 
phenomenological renormalisation. ‘Free’ and ‘peri- 
odic’ label results for strips of triangular lattice with 
free boundary conditions and strips of square lattice 
with periodic boundary conditions, respectively. 
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